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Abstract
We study a continuum interfacial Hamiltonian model of fluid adsorption in
a (1 + 1)-dimensional wedge geometry, which is known to exhibit a filling
transition when the contact angle θπ = α, with α the wedge angle. We
extend the transfer matrix analysis of the model to calculate the interfacial
height probability distribution function P(l; x), for arbitrary positions x along
the wedge. The asymptotics of this function reveal a fluctuation-induced
disorder point (non-thermodynamic singularity) that occurs prior to filling when
θπ = 2α, where there is a change of length scales determining the decay of
P(l; x).

PACS numbers: 6845G, 0210S, 0570N, 6810, 8265D

Interfacial fluctuation effects occurring at filling transitions in wedge and cone-shaped non-
planar geometries have recently attracted much attention [1–4]. The fluctuation theory confirms
the elegant thermodynamic prediction [5] that filling occurs at a temperature TF satisfying

θπ(TF) = α (1)

where θπ(T ) denotes the temperature-dependent contact angle of the liquid drop (for example)
on a planar surface and α is the wedge angle. The theory also predicts that continuous (critical)
filling is characterized by large-scale, universal interfacial fluctuation effects associated with
the unbinding of the liquid–vapour interface. In general, these fluctuation effects are much
more pronounced than those occurring at wetting and reflect the influence of a soft-mode,
breather fluctuation, which translates the interface up and down the sides of the confining
geometry.

In this Letter we show how fluctuation effects also lead to a disorder point for wedge/cone
filling in 1 + 1 dimensions occurring at a temperature TD < TF, where TD satisfies the equally
elegant condition

θπ(TD) = 2α. (2)

As we shall show, TD denotes a temperature at which there is an abrupt change in the α

dependence of the length scale determining the aymptotic decay of the distribution function
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P(l; x). Here P(l; x) denotes the probability for finding the interface a distance l from the
wedge wall, at position x along it (measured from the apex).

Consider a wedge geometry in 1 + 1 dimensions comprising a (hard) wall whose height
above the x-axis is described by the height function z(x) = |x| tan α. We suppose the wall
is in contact with a bulk vapour phase at saturation chemical potential corresponding to bulk
two-phase co-existence and that (at low temperatures) a thin film of liquid forms at the wall–
vapour interface. Denoting the local height of the liquid–vapour interface above the x-axis by
y(x), the starting point of our analysis of filling in open wedges (corresponding to small α) is
the interfacial model [1, 2]:

H [y] =
∫

dx

{
�

2

(
∂y

∂x

)2

+ W(y − α|x|)
}

(3)

where � denotes the surface tension of the unbinding liquid–vapour interface and W(l)

is the usual binding potential describing the direct influence of wall–fluid and fluid–fluid
forces, which is known from the theory of wetting in planar systems [6]. Notice that the
binding potential is a function of the relative distance between the wall and the interface,
denoted l ≡ y − α|x|. This model can be readily studied using continuum transfer matrix
techniques [2,4] and is a straightforward extension of the method well known from the theory
of wetting [7]. The main results are summarized below and form the starting point for our
present analysis. We suppose that the wedge extends from x = −L/2 to L/2 and choose fixed
end-point interfacial heights l−e and le at these points. By splitting the partition function ZW
into contributions to the left and right of the wedge apex and changing collective coordinates
to the relative interfacial height it immediately follows that

ZW ∝
∫ ∞

0
dl0 e2α�l0Zπ

(
l−e, l0; L

2

)
Zπ

(
l0, le; L

2

)
(4)

where l0 = l(0) denotes the (mid-point) height of the interface above the apex. Here
Zπ (l1, l2;X) corresponds to the partition function for an interface near a planar wall given
by the usual spectral sum (or integral) [7]

Zπ (l1, l2; x) =
∑
n

ψn(l1)ψn(l2)e
−Enx (5)

where the eigenfunctions (labelled n = 0, 1, . . .) satisfy the Schrödinger equation (with
kBT ≡ 1)

− 1

2�

∂2

∂l2
ψn(l) + W(l)ψn(l) = Enψn(l). (6)

From the expression (4) for the wedge partition function it is transparent that in the
thermodynamic limit of an infinite wedge the probability distribution function for the mid-
point height is given by

P(l; 0) = e2�αl|ψ0(l)|2
〈0|e2�αl|0〉 (7)

where

〈n|f (l)|m〉 =
∫

ψn(l)f (l)ψ∗
m(l) dl (8)

is the inner product with respect to the planar eigenfunctions. The result for the mid-point
distribution function is very simple and from it one can readily obtain the thermodynamic
prediction phase boundary (1) for filling for arbitrary choices of binding potential W(l). To
see this, note that the ground state planar wavefunction decays as e−�θπ l as l → ∞ since the
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eigenvalue E0 is equivalent to the planar excess free energy. This quantity is hence related to
the contact angle by E0 ≈ −�θ2

π/2 by approximating Young’s equation in the small-angle
limit. Thus P(l; 0) only describes a localized interface provided θπ(T ) > α. Hereafter
we specialize to binding potentials that decay faster than ∼1/l, which correspond to the
fluctuation-dominated regime for filling and represent the universality class for systems with
short-ranged forces [4]. For this case we can follow standard methods [7], drop the binding
potential term in the Schrödinger equation and replace it with the boundary condition on the
planar wavefunction

∂

∂l
ln ψ(l)|l=0 = −τ (9)

where τ is a suitable linear measure of the deviation from the critical wetting temperature. For
this system we can identify θπ = τ/� and write the explicit form of the mid-point distribution
function as

P(l; 0) = 2�(θπ − α)e2�(α−θπ )l . (10)

Thus the divergence of the mean mid-point height 〈l0〉 and roughness ξ⊥ as θπ → α in the
fluctuation-dominated regime of filling is characterized by critical exponents that are identical
to the equivalent exponents describing the divergence of the interface height and roughness
at critical wetting in 1 + 1 dimensions belonging to the strong-fluctuation regime [2, 6]. This
remarkable connection extends to the full scaling form of the distribution function since for
the planar system

Pπ(l) = 2�θπe−2�θπ l (11)

which is clearly of the same form as P(l; 0) with θπ replaced by θπ − α [4].
The central question addressed in this Letter concerns the position dependence of the full

probability distribution P(l; x). In the limit corresponding to distances infinitely far from the
wedge bottom (after the limit L → ∞ has been taken, of course) we can identify

lim
x→∞ P(l; x) = Pπ(l) = |ψ0(l)|2 (12)

corresponding to the standard quantum mechanical result. Here we seek to understand how
P(l; x) changes its form from (10) to (11) as we move away from the wedge bottom. The full
distribution function also allows us to calculate the equilibrium profile 〈l(x)〉, which has not
previously been studied (see figure 1).

A formal expression for P(l; x) follows from the expression for the partition function
which explicitly integrates over the interface coordinate (written lx = l(x))

ZW ∝
∫ ∞

0
dl0

∫ ∞

0
dlx Zπ

(
l−e, l0; L

2

)
e2�αl0Zπ (l0, lx; x)Zπ

(
lx, le; L

2
− x

)
. (13)

If we now take the limit L → ∞ and substitute for the appropriate wavefunctions within the
model defined by (9) we obtain

P(l; x) = ψ0(l)
∫∞

0 dl′ e2�αl′ψ∗
0 (l

′)e−xτ 2/2�Zπ (l, l
′; x)

〈0|e2�αl|0〉 . (14)

To proceed we use the known closed-form expression for the planar propagator [7]

Zπ (l, l
′; x) = 2H(τ)τe−τ(l+l′)+τ 2x/2� +

∫ ∞

−∞

dp

2π
e−p2x/2�

{
eip(l−l′) +

ip + τ

ip − τ
e−ip(l+l′)

}
(15)

whereH(τ) denotes the usual Heaviside step function. Thep integration can now be performed
by a simple contour integration (see footnote in [7]) and the result inserted into the above
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Figure 1. Plot showing the mean interfacial profile, 〈l(x)〉 ≡ ∫∞
0 lP (l; x) dx, computed by

numerical integration. The plots have been generated with α = 0.3, � = 1 and with θπ having
three values in multiples of α: 1.6, 1.4 and 1.2. The dashed curve shows the expected planar profile
in the case θπ = 1.6α.

expression for the wedge propagator (14). We find

P(l; x) = ψ0(l)

〈0|e2�αl|0〉
∫ ∞

0
dl′
(

e2�αl′e−τ l′e−τ 2x/2�

{√
�

2πx
(e−�(l−l′)2/2x + e−�(l+l′)2/2x)

}

+τeτ 2x/2�−τ(l+l′)erfc

(√
�

2x
(l + l′) −

√
x

2�
τ

))
(16)

which only leaves some standard integrals. These are all of the form

I1(a, b) =
∫ ∞

0
eaxe−b2x2

dx ⇒ I1(a, b) =
√

π

2b
ea2/4b2

erfc
(
− a

2b

)
(17)

I2(a, b, c) =
∫ ∞

0
eaxerfc(bx + c) dx ⇒ I2(a,±b, c)

= 1

a

(
±ea2/4b2

e−ac/berfc
(
∓ a

2b
+ c
)

− erfc(c)
)

(18)

where (17) is a modification of a standard integral and (18) is analogous to one for normal
error functions [8]. Note that the second integral is valid only for b > 0. Our final expression
for the distribution function is written

P(l; x) = �(θπ − α)e2�(α−θπ )le2�αx(α−θπ )erfc

(√
�x

2
(θπ − 2α) −

√
�

2x
l

)

−�αe−2�αle2�αx(α−θπ )erfc

(√
�x

2
(θπ − 2α) +

√
�

2x
l

)

+�θπe−2�θπ lerfc

(
−
√

�x

2
θπ +

√
�

2x
l

)
(19)

which is the main result of this Letter. It is straightforward, though tedious, to check that
this result is fully normalized ∀x and reduces to known cases (10) and (11) for x → 0 and
x → ±∞ respectively.

From (19) we can evaluate the equilibrium profile 〈l(x)〉 using simple (numerical)
integration. Some representative plots of this are shown in figure 1 and show the expected
flatness of the profile in the central filled region. Notice also that as x is increased away from
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0

l x

Figure 2. A plot of the probability density function for x and l with α = 0.3, � = 1 and
θπ = 1.6α. Notice how the distribution becomes more localized as the distance from the wedge
centre is increased (see the text).

the wedge apex the local distribution function P(l; x) becomes increasingly localized (see
figure 2).

A rather unexpected and intriguing feature of the full distribution function is the appearance
of the term (θπ − 2α), which acts as the discriminant for the asymptotic decay of P(l; x) as
x → ∞ at fixed l. Depending on the sign of this discriminant, the asymptotics of P(l; x) pick
up quite distinct contributions from the error functions. Explicitly for θπ > 2α we find

P(l; x → ∞) ∼ 2�θπe−2�θπ l + x− 3
2 e− 1

2 �θ2
π xe−�θπ l

×
[√

8�

π
(2�θπ l − 1)

α(α − θπ)

θ2
π (θπ − 2α)2

]
+ · · · (20)

whilst for α < θπ < 2α we find

P(l; x → ∞) ∼ 2�θπe−2�θπ l + e2�αx(α−θπ )2�[(θπ − α)e2�(α−θπ )l − αe−2�αl] + · · · . (21)

Defining an appropriate length scale ξF from the asymptotic decay of P(l; x) we can thus
identify ξF ∼ ξ‖ for θπ > 2α and ξF ∼ l0 for α < θπ < 2α 1. In terms of the contact angle we
can express ξF as

ξF =




2

�θ2
π

θπ > 2α

1

2�α(θπ − α)
α < θπ < 2α

(22)

which identifies θπ = 2α as a non-thermodynamic singularity prior to filling. Notice that ξF

is continuous at the disorder point, θπ = 2α.
To conclude our Letter we suggest that the location of the disorder point has a geometrical

interpretation which is closely related to the thermodynamic condition for filling. One way

1 Interestingly for α < θπ < 2α, ξF can be identified precisely as the the correlation length across the system defined
via the curvature as

√
l(0)/ lxx(0).
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of deriving the thermodynamic result (1) is to notice that at θπ = α one may imagine a
macroscopically flat meniscus of arbitrary size extending from one side of the wedge to the
other, which satisfies the local Young equation at both regions of contact. This suggests that
in the present grand canonical ensemble there is therefore no surface free-energy restriction
to translations in the interface height up or down the wedge and that therefore the wedge
is completely filled. This is indeed what is found when effective models are constructed to
account for the breather mode which translates the interface up and down the wedge [3]. Now
consider the fluctuation contributions to the free energy when the wedge is partially filled,
corresponding to θπ > α. These fluctuations are highly important for filling, since we know
that the roughness and film thickness are comparable. Let us suppose that the interface runs
down the left side of the wedge wall and leaves at some arbitrary point of contact. The most
prevalent fluctuations of this type will leave the wall with local contact angle θπ (relative to
the tilted wall). Depending on the sign of the discriminant (θπ − 2α) such a configuration
will either be directed towards or away from the other side of the wedge. Given that the
configuration must eventually reach the other side of the wedge, we conclude that if θπ > 2α
the length scale controlling this decay will not depend on the geometry and will be intrinsic to
the properties of an interface at a flat wall (since the wedge bottom plays no role). In contrast,
for θπ < 2α the geometry is essential and one may anticipate that a different length scale
emerges. These qualitative remarks are entirely in keeping with the explicit results of the
transfer matrix analysis. This geometrical picture is also suggestive that a similar phenomena
happens in the three-dimensional wedge although it may be very difficult to prove this.

In summary we have derived a closed-form expression for the full position-dependent
probability distribution function P(l; x) for filling in 1 + 1 dimensions and have shown that
a non-thermodynamic singularity precedes the filling transition. The simplicity of the exact
condition for this disorder point suggests a geometrical interpretation in terms of fluctuation
contributions.

AJW acknowledges support from the EPSRC.
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